Otáčivý pohyb

Cvičení 1

Vrtule větrné elektrárny má list o délce 45 m a vykoná 20 otáček za minutu. Vypočítejte frekvenci, periodu a úhlovou rychlost otáčení vrtule. Jakou rychlostí se pohybuje konec listu vrtule?

16.40 – Větrná elektrárna
Zdroj
  • 0,33 Hz;
  • 3 s;
  • 2,09 rad/s;
  • 94 m/s

Cvičení 2

Úhlovou brusku (lidově se jí říká „flexka“) používají řemeslníci k řezání a broušení. Její kotouč o průměru 125 mm vykoná 11 000 otáček za minutu. Vypočítejte frekvenci, periodu a úhlovou rychlost otáčení brusného kotouče. Jakou rychlostí z něj odletují hořící kousky zpracovávaného materiálu?

16.41 – Úhlová bruska
Zdroj
  • 183 Hz;
  • 5,45 ms;
  • 1 150 rad/s;
  • 72 m/s

Cvičení 3

Vypočítejte úhlovou rychlost otáčení Země kolem její osy. Vypočítejte, jakou rychlostí se díky otáčení Země pohybuje dům stojící na rovníku. Poloměr Země je 6378 km, a kolem své osy se otočí o 360° za jeden hvězdný den.

  • 7,29 ⋅ 10−5 rad/s;
  • 465 m/s

Cvičení 4

Vypočítejte, jakou rychlostí se kvůli otáčení Země pohybuje dům, ve kterém bydlíte. Použijte postup podobný jako v předešlém příkladu. Zeměpisnou šířku vaší obce vyhledejte na internetu.

pro Brno je \(\vartheta=49^\circ\), \(v=305\ \mathrm{m/s}\)

Cvičení 5

Translace a rotace jsou si v jistém ohledu podobné. Do prázdných políček v tabulce doplňte definiční vztahy, resp. zákon pro daný pohyb, a všímejte si, které veličiny si vzájemně odpovídají. Pomocí analogie si pak ve spodních řádcích tabulky můžete odvodit užitečné vztahy pro otáčivý pohyb.

Posuvný pohyb = translace Otáčivý pohyb = rotace
Vektor posunutí \(\Delta\Vec{r}\) Úhel otočení \(\Delta\varphi\)
Rychlost pohybu Úhlová rychlost
Síla \(\Vec{F}\) Moment síly vzhledem k ose z \(M_z\)
První Newtonův zákon Momentová věta
Kinetická energie posuvného pohybu Kinetická energie otáčivého pohybu
Zrychlení Úhlové zrychlení \(\varepsilon\)
Druhý Newtonův zákon Pro zrychlenou rotaci platí
Práce konstantní síly Práce síly při otáčení
Výkon síly při rychlosti \(v\) Výkon síly při rychlosti otáčení \(\omega\)
Tlačítko pro návrat zpět nahoru na stránce (back to top)